
RESEARCH ARTICLE

A parallel Canny edge detection algorithm

based on OpenCL acceleration

Yupu Song1☯, Cailin Li2☯*, Shiyang Xiao3☯, Qinglei Zhou4, Han XiaoID
5*

1 College of Computer Engineering, Shangqiu Polytechnic, Shangqiu, China, 2 School of Civil and

Architectural Engineering, Shandong University of Technology, Zibo, China, 3 School of Civil Engineering,

Southeast University, Nanjing, China, 4 School of Computer and Artificial Intelligence, Zhengzhou University,

Zhengzhou, China, 5 School of Information Science and Technology, Zhengzhou Normal University,

Zhengzhou, China

☯ These authors contributed equally to this work.

* licailin@sdut.edu.cn (CL); xiaohan70@163.com (HX)

Abstract

In the process of Canny edge detection, a large number of high complexity calculations

such as Gaussian filtering, gradient calculation, non-maximum suppression, and double

threshold judgment need to be performed on the image, which takes up a lot of operation

time, which is a great challenge to the real-time requirements of the algorithm. The tradi-

tional Canny edge detection technology mainly uses customized equipment such as DSP

and FPGA, but it has some problems, such as long development cycle, difficult debugging,

resource consumption, and so on. At the same time, the adopted CUDA platform has the

problem of poor cross-platform. In order to solve this problem, a fine-grained parallel Canny

edge detection method is proposed, which is optimized from three aspects: task partition,

vector memory access, and NDRange optimization, and CPU-GPU collaborative parallelism

is realized. At the same time, the parallel Canny edge detection methods based on multi-

core CPU and CUDA architecture are designed. The experimental results show that

OpenCL accelerated Canny edge detection algorithm (OCL_Canny) achieves 20.68 times

acceleration ratio compared with CPU serial algorithm at 7452 × 8024 image resolution. At

the image resolution of 3500 × 3500, the OCL_Canny algorithm achieves 3.96 times the

acceleration ratio compared with the CPU multi-threaded Canny parallel algorithm. At 1024

× 1024 image resolution, the OCL_Canny algorithm achieves 1.21 times the acceleration

ratio compared with the CUDA-based Canny parallel algorithm. The effectiveness and per-

formance portability of the proposed Canny edge detection parallel algorithm are verified,

and it provides a reference for the research of fast calculation of image big data.

1. Introduction

With the development of computer science, image processing technology has achieved fruitful

research results in recent years and has been widely used in industrial, military, medical, and

other fields. As the most basic feature of the image, the edge feature of the image can greatly

reduce the image information to be processed on the premise of retaining the shape

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 1 / 31

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Song Y, Li C, Xiao S, Zhou Q, Xiao H

(2024) A parallel Canny edge detection algorithm

based on OpenCL acceleration. PLoS ONE 19(1):

e0292345. https://doi.org/10.1371/journal.

pone.0292345

Editor: Ayesha Maqbool, National University of

Sciences and Technology NUST, PAKISTAN

Received: April 18, 2023

Accepted: September 18, 2023

Published: January 5, 2024

Copyright: © 2024 Song et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from https://github.com/xef6273/image/tree/main/

dataset.

Funding: This work was supported by the National

Natural Science Foundation of China (Nos.

61572444, 61250007), the Key Scientific Research

Projects of Henan Province Colleges and

Universities of China (No. 22A520049), and the

Natural Science Foundation of Shandong Province

(No. ZR2022MD039). The funders had no role in

https://orcid.org/0000-0002-5538-7789
https://doi.org/10.1371/journal.pone.0292345
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292345&domain=pdf&date_stamp=2024-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292345&domain=pdf&date_stamp=2024-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292345&domain=pdf&date_stamp=2024-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292345&domain=pdf&date_stamp=2024-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292345&domain=pdf&date_stamp=2024-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292345&domain=pdf&date_stamp=2024-01-05
https://doi.org/10.1371/journal.pone.0292345
https://doi.org/10.1371/journal.pone.0292345
http://creativecommons.org/licenses/by/4.0/
https://github.com/xef6273/image/tree/main/dataset
https://github.com/xef6273/image/tree/main/dataset

information of the object [1]. The edge of a digital image contains a variety of useful informa-

tion, which can be used to detect and recognize images. Digital image edge detection technol-

ogy is widely used in image segmentation, motion detection, target tracking, face recognition,

and other fields. Therefore, edge detection is one of the most important key technologies in

the field of image processing [2].

At present, image edge detection algorithms mainly include edge detection algorithms

based on wavelet transform, edge detection algorithms based on morphology, edge detection

algorithms based on machine learning, and traditional edge detection algorithms [3]. The

edge detection algorithm based on wavelet transform is used to transform the image with dif-

ferent scales. When the scale is small, the edge detail information is rich, and the positioning

accuracy is high, but the anti-disturbance ability is poor. When the scale is large, the posi-

tioning accuracy is low and the anti-jamming ability is good, so it fuses the results of edge

images of each scale, taking into account the positioning accuracy and anti-jamming ability

to a certain extent, but the algorithm complexity is high [4]. The edge detection algorithm

based on morphology uses the continuous movement of structural elements in the image to

analyze and process the image and extracts different image features by selecting different

structural elements for opening and closing and other operations. This algorithm is easy to

implement, and can effectively remove the salt and pepper noise, but its edge location accu-

racy is not good. Edge detection algorithm based on machine learning has become a new

research direction in recent years. In particular, the deep features of the image are extracted

automatically by deep learning, and a good edge effect is obtained. Its disadvantage is that it

requires a large number of samples of training and learning, and the computational complex-

ity is high [5].

The traditional edge detection algorithms include the Roberts operator, Prewitt operator,

Sobel operator, and so on. These algorithms are simple and easy to implement, but their

denoising ability is poor, crack edge recognition is incomplete, and pseudo edges are easy to

occur. Compared with these algorithms, the Canny edge detection operator used in this paper

has a strong denoising ability and high detection accuracy [6]. The Canny edge extraction

method was first proposed by John F. Canny in 1986 [7]. The Canny edge detection method is

based on finding the local maximum of the gradient amplitude of the image. It uses the first

derivative of the Gaussian filter to calculate the gradient amplitude. It uses the double-domain

value method to detect the strong and weak edges respectively, and only when the strong and

weak edges are connected, the weak edges where the strong edges are discontinuous will be

included in the detection results. As a result, the influence of noise on the detection results can

be reduced, and the detection results can achieve a better balance between noise and edge

detection. However, the Canny operator also has obvious shortcomings. Due to the calculation

flow of Gaussian filtering, gradient amplitude and direction calculation, non-maximum sup-

pression, and double threshold processing, the algorithm has high complexity and slow opera-

tion speed, which is contrary to the fast and accurate application principle in practical

engineering, which greatly restricts the engineering practicability of the algorithm. In order to

improve the computing speed of the Canny operator, it is a good choice to use graphics pro-

cessing unit (GPU) to parallelize processing. GPU has multiple threads for fast computing of

large data with low coupling and high parallelism. At the same time, the parallel computing of

GPU is becoming more and more mature in recent years, and its friendly programming opera-

tion and people-friendly price also make it possible to use GPU parallel processing Canny

operator [8, 9]. In order to use GPU parallel processing Canny operator, it is necessary to opti-

mize and parallelize the processing process of the Canny operator, so as to meet the require-

ments of GPU parallel processing. Through the optimization and transformation of the Canny

operator, the processing mode of running GPU+CPU reduces the edge detection time of a

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 2 / 31

research design, data collection and analysis, and

the decision to release or prepare the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0292345

1280 × 720 image to less than 10 ms, which greatly improves the execution efficiency of the

algorithm and lays a foundation for practical industrial applications.

For the problem that it is difficult to have both effectiveness and performance portability,

this paper re-evaluates and analyzes all the steps of Canny edge detection according to the

architecture of GPU, so that the key hot steps run completely on GPU. Based on the architec-

ture of open computing language (OpenCL), the parallel implementation of the Canny edge

detection algorithm (OCL_Canny) is completed. By analyzing the conventional inefficient

memory access mode of single work-item and single pixel and the deficiency of low utilization

of GPU memory, the method of vectorized memory access is proposed, which improves

resource utilization and computational efficiency. At the same time, the OCL_Canny parallel

algorithm also has the advantages of real-time and performance portability.

Therefore, the main contributions of this paper are as follows: (1) implement the Canny

edge detection algorithm OCL_Canny through heterogeneous computing. (2) The OMP_-

Canny and CUDA_Canny parallel algorithms under the mainstream parallel computing

framework of OpenMP and compute unified device architecture (CUDA) compare the time-

consuming and accelerated performance with the OCL_Canny algorithm. (3) The perfor-

mance of OCL_Canny on a heterogeneous GPU platform is evaluated, and the portability of

its performance is analyzed.

The rest of the paper is arranged as follows. In Section 2, we review the research results of

the Canny edge detection parallel algorithm, the existing implementation of FPGA and DSP

computing architecture, the existing computing methods on graphics hardware, and the

Canny algorithm on Hadoop cluster system. Section 3 summarizes the basic principles of

OpenCL architecture and describes the Canny edge detection algorithm and the parallelism

analysis of Canny operators. Section 4 describes the parallel computing process, design, and

optimization solution of the Canny operator under OpenCL architecture. Section 5 discusses

the design of OMP_Canny and CUDA_Canny parallel algorithms. Section 6 gives the relevant

experimental results and makes an empirical evaluation of the performance of the OCL_Canny

operator. Section 7 is the conclusion.

2. Background and introduction of related research

At present, many researchers have researched the implementation of the Canny edge detection

parallel algorithm. SHI Weizhong et al. [10] proposed an optimization algorithm of Canny

edge detection based on FPGA, which improves the processing speed under the 512 × 512

gray-scale image resolution. Jin et al. [11] chose ZC706 as the development platform to acceler-

ate the edge detection of Canny based on the SDSoC development environment and obtained

16.97 times the speedup under the 512 × 512 gray-scale image resolution. Keqiang et al. [12]

developed a Canny operator on the TI DSP TMS320C6678 processor, which improves the

operator speed at 800 × 600 gray-scale image resolution. Xiangjiao et al. [13] implemented a

parallel Canny algorithm based on threading building block (TBB) tool and C++ language and

achieved 3.673 times acceleration ratio on 22.89 M gray-scale image based on a quad-core

CPU. Yue et al. [14] realized the Canny edge detection algorithm on GPU using OpenGL, and

the real-time performance of the algorithm was satisfied under 256 × 256 gray-scale image res-

olution. Bin et al. [15] proposed a method to quickly implement the Canny operator based on

GPU+CPU, which can accelerate up to 5.39 times at 1024 × 1024 gray-scale image resolution.

Jin et al. [16] proposed a Canny edge detection algorithm under OpenCL architecture, which

achieves 1.42 times speedup at 2048 × 1536 gray-scale image resolution without considering

data transmission. Mochurad [17] proposed a parallel computing method of the Canny algo-

rithm using CUDA technology. The performance of the algorithm for processing gray-scale

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 3 / 31

https://doi.org/10.1371/journal.pone.0292345

images with image frames of 10240 × 10240 is improved by 68 times. Horvath et al. [18] imple-

mented the Canny edge detection algorithm on the CUDA platform and the performance of

processing gray-scale image with an image size of 1280 × 720 was improved by 101 times.

Some scholars have studied the implementation of the Canny edge detection algorithm in

Hadoop cluster architecture, which improved the performance of batch processing images

[19, 20].

Some scholars have proposed an improved Canny image edge detection method, which can

effectively detect the gray-scale image edge of 512 × 512 image size in real time on FPGA [21,

22]. Lee et al. [23] implemented a Canny edge detector suitable for advanced mobile vision

applications on FPGA under the slight sacrifice of detection effect, which saves the system exe-

cution time under various gray-scale image resolutions such as 512 × 512. However, the

method reduces the effect of edge detection. Suwen et al. [24] proposed an improved Canny

edge detection algorithm based on the FPGA platform, which improves the ability of weak

edge detection. Shengxiao et al. [25] proposed an improved algorithm for edge detection of the

Canny operator based on the GPU platform, which achieves 64 times speedup at 512 × 512

gray-scale image resolution.

Fuqiang et al. [26] designed the line segment detector algorithm with low error rate by

using the Canny edge detection algorithm implemented on FPGA, which has the advantages

of high reliability and high speed. Sivakumar and Janakiraman [27] proposed a new ROI

region segmentation method for MRI images by implementing enhanced Canny operators on

FPGA. Hongye [28] realized the fingerprint acquisition system based on DSP by optimizing

the Canny edge extraction operator, which makes the identification speed of the fingerprint

wireless acquisition system faster. Rongbao et al. [29] designed a verticality recognition system

based on DSP+FPGA using the improved Canny algorithm. The results show that the system

has high detection speed, and high precision and meets real-time requirements. Hanjun and

Zeng [30] combined the Gaussian mixture model with Canny edge detection to extract the tar-

get contour, which shortens the computing time on the CUDA platform and meets the real-

time requirements of video analysis. Tengzhang et al. [31] proposed a method based on the

multi-feature Canny edge detection algorithm and the joint probability data association algo-

rithm for moving multi-ship detection and tracking by on-orbit satellite. This method can

detect and track the target quickly and accurately on the embedded GPU development

platform.

To sum up, people mainly study the performance of the Canny algorithm from three

aspects. The first is to accelerate the Canny operator in parallel under the architecture of

multi-core CPU, FPGA, DSP, GPU, and Hadoop clusters. But the parallel effect of CPU is not

strong, the performance-to-price ratio is not high, and the computing power is weak. The cost

of FPGA is high, the resources are expensive, and the debugging is difficult. CUDA technology

can only be carried out on NVIDIA graphics cards, and its cross-platform and portability are

poor. Especially in the case of large-scale computing resource equipment, it is impossible to

transplant and reuse the code on heterogeneous platforms. The second is to improve the per-

formance of the improved Canny operator by improving the Canny operator in some aspects,

such as optimizing the calculation process. The third is to apply the Canny operator to a variety

of practical applications to achieve the acceleration of the application system under the parallel

computing architecture. In these research results, most of the research results use a single par-

allel technology to improve the algorithm, without comparison with other parallel computing

models, it cannot get the best acceleration effect. Current computer systems generally contain

a variety of processors, such as CPU, GPU, and other types of processors. How to make rea-

sonable and full use of a variety of computing resources on heterogeneous computing plat-

forms will become very important.

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 4 / 31

https://doi.org/10.1371/journal.pone.0292345

In this paper, the storage of GPU is designed and used reasonably by using OpenCL parallel

acceleration technology to realize the high-speed computing of the Canny image edge detec-

tion algorithm. By taking the three memory access modes of image data access on GPU,

namely, global memory, local memory, and constant memory, as a starting point, the parallel

implementation of image Gaussian filtering and image gradient in these three kinds of mem-

ory is analyzed and designed, so that the two operations can be realized more efficiently on

GPU. In the process of research, GPU is used to realize image Gaussian filtering, image gradi-

ent, non-maximum value suppression of gradient image, and determining image edge points

in parallel. To obtain the fast extraction of image edge as the goal, the calculation methods of

image Gaussian filtering and image gradient are optimized and improved. From the perspec-

tive of saving storage resources and being more in line with the parallel programming architec-

ture of GPU, the computing is improved, such as improving the operation method of the

image template and extended image to make it more suitable for the parallel implementation

under GPU. At the same time, the construction of pixel vectorization calculation under GPU

is applied to the calculation of image Gaussian filtering and image gradient, which verifies the

effectiveness of the vectorization parallel computing method of image Gaussian filtering and

image gradient calculation.

3. Software model of algorithm

3.1. Overview of OpenCL

OpenCL is used for a parallel computing platform, which establishes the writing standard of

parallel systems. OpenCL has a relatively wide range of applications, providing computing

support for CPU, GPU, FPGA, and other devices, and has become a programming standard in

the field of heterogeneous systems. OpenCL provides developers with a common program-

ming interface and a development model for the underlying hardware layout.

OpenCL heterogeneous parallel architecture consists of four parts: platform model, execu-

tion model, storage model, and programming model. The four models support each other

when the OpenCL system is running, and each model has its own unique role.

(1) Platform model

As shown in Fig 1, the OpenCL platform model consists of a Host connected to one or

more OpenCL compute devices, which is used to realize the data exchange between the host

Fig 1. OpenCL platform model.

https://doi.org/10.1371/journal.pone.0292345.g001

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 5 / 31

https://doi.org/10.1371/journal.pone.0292345.g001
https://doi.org/10.1371/journal.pone.0292345

and the OpenCL devices. CPU, GPU, and other processors that support OpenCL all belong to

OpenCL devices. An OpenCL device can be divided into one or more compute units (CU),

and each CU is composed of one or more processing elements (PEs) [32].

(2) Memory model

The memory in OpenCL architecture is divided into four different memory types. The loca-

tion of each memory in the platform is shown in Fig 2. These four types of memory are global

memory, constant memory, local memory, and private memory [33].

(3) Execution model

The execution model is shown in Fig 3. The execution model of OpenCL consists of two

parts, one is the host system executing on the host machine, and the other is the kernel soft-

ware executing on the OpenCL device. The OpenCL architecture manages the execution of

kernel software in OpenCL devices by using context in the main system [34].

When the send kernel command is submitted on the host, the system plans an N-dimen-

sional index space NDRang. The operation of each point in this space is called a work, which

OpenCL calls a work-item. All work-items in the index space have their own unique coordi-

nates, which serve as the global ID for each work-item. When sending kernel execution com-

mands, the work-item is divided into several areas of the same size and becomes a collection of

work-items, which are called work-groups. The number of work-items contained in all work-

Fig 2. OpenCL memory model.

https://doi.org/10.1371/journal.pone.0292345.g002

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 6 / 31

https://doi.org/10.1371/journal.pone.0292345.g002
https://doi.org/10.1371/journal.pone.0292345

groups is the same, and similar to the global ID of work-items, work-groups also have ID,

called work-group ID. Work-items in each work-group have a unique ID in the work-group,

called a local ID. Fig 3 gives a two-dimensional index space, the size of the index space is Gx *
Gy, in which a coordinate system is established to represent the global ID (gx, gy) of each

work-item. The index space in the graph is divided into multiple work-groups with Sx * Sy
work-items. OpenCL stipulates that Gx must be divisible by Sx and Gy must also be divisible

by Sy [35].

(4) Programming model

OpenCL achieves the goal of acceleration by executing tasks in parallel, which is divided

into task parallelism and data parallelism. Task parallel mode means that all the working nodes

in the workspace of OpenCL devices are relatively independent, and the system can accelerate

by executing multiple kernels at the same time or adding local kernel tasks to the kernel. Data

parallel methods are commonly used, and multiple data are calculated in parallel so that the

computational efficiency is significantly improved.

3.2. Algorithm theory

3.2.1. Canny principle. The Canny operator fully reflects the mathematical characteristics

of the optimal edge detector. It is the optimal approximation operator for the signal-to-noise

ratio and location ability and is widely used in image processing and pattern recognition prob-

lems. The Canny operator not only has a good edge detection performance but also is insensi-

tive to noise, even in a noisy environment, it also has a good edge detection effect. Therefore,

the Canny operator can be applied to edge detection in different environments.

(1) Image preprocessing

The images to be detected are usually disturbed by noise. The amplitude of the gradient

near the noise pixel is large, and the edge detection operator is easy to mistakenly detect the

noise pixel as the edge pixel. Therefore, it is necessary to remove the noise in the image.

When the image is used for edge detection, the original data must be processed first. The

input image is preprocessed by convolution filter with Gaussian filter to remove noise and

reduce the influence of noise on gradient calculation, so as to better realize the effect of edge

detection image segmentation. Therefore, image preprocessing requires convolution of the

original image and Gaussian mask, and the processed image is more blurred than the original,

which is conducive to image edge detection [36].

In the Canny operator, the smooth denoising of the image uses the first derivative of the

3 × 3 two-dimensional Gaussian function, and the Gaussian function and image convolution

Fig 3. OpenCL execution model.

https://doi.org/10.1371/journal.pone.0292345.g003

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 7 / 31

https://doi.org/10.1371/journal.pone.0292345.g003
https://doi.org/10.1371/journal.pone.0292345

are shown in Eq (1).

G x; y; sð Þ ¼
1

2ps2
e�

x2þy2

2s2

H x; yð Þ ¼ f x; yð Þ �G x; y; sð Þ

8
<

:
; ð1Þ

In Eq (1), f(x, y) is the original image, G(x, y, σ) is the Gaussian function, σ is the standard

deviation of the two-dimensional Gaussian function, and H(x, y) is the image smoothed by the

Gaussian filter.

(2) Determine the amplitude and direction of the image gradient

The amplitude of the pixel gradient of the image H(x, y) can be calculated by the first partial

derivative. In calculating the gradient direction, two 3 × 3 Sobel operators are used as the first

order approximation of the partial derivatives in the x direction and y direction, as shown in

Fig 4 [37].

Before determining the amplitude and direction of the image gradient, Eq (2) is used to

solve the first order partial derivative matrix of the x-axis and y-axis direction.

P x; yð Þ ¼ H xþ 1; y � 1ð Þ þ 2H xþ 1; yð Þ þH xþ 1; yþ 1ð Þ

� H x � 1; y � 1ð Þ � 2H x � 1; yð Þ � H x � 1; yþ 1ð Þ

Q x; yð Þ ¼ H x � 1; yþ 1ð Þ þ 2H x; yþ 1ð Þ þ H xþ 1; yþ 1ð Þ

� H x � 1; y � 1ð Þ � 2H x; y � 1ð Þ � H xþ 1; y � 1ð Þ

8
>>>>>><

>>>>>>:

ð2Þ

The amplitude and direction of the gradient are calculated by the finite difference of the

first order partial derivative. For the calculation results of the gradient amplitude, the non-

maximum value suppression method is adopted. After processing, the gradient amplitude M
and gradient direction θ at the pixel H(x, y) of the image can be calculated by Eqs (3) and (4)

respectively [38].

M x; yð Þ ¼

ffi

P x; yð Þ
2
þ Q x; yð Þ

2

q

ð3Þ

y x; yð Þ ¼ arctan
Q x; yð Þ

P x; yð Þ

� �

ð4Þ

(3) Perform non-maximum value suppression on the gradient amplitude image to deter-

mine the edge point

Fig 4. Sobel operator template.

https://doi.org/10.1371/journal.pone.0292345.g004

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 8 / 31

https://doi.org/10.1371/journal.pone.0292345.g004
https://doi.org/10.1371/journal.pone.0292345

Non-maximum value suppression is the key to find all the target edge points in the image.

In order to determine the edge, it is necessary not only to get the global gradient but also to

retain the maximum point of the local gradient and suppress the non-maximum value. In the

3 × 3 region, the edge can be divided into four directions: 0˚, 45˚, 90˚ and 135˚. Similarly, the

reverse direction of the gradient is also four directions (orthogonal to the edge direction).

Therefore, in order to suppress the non-maximum value, all possible directions are quantized

into four directions, as shown in Fig 5 [39].

In this way, the direction angle is regulated to the following four directions:

The vertical edge―gradient direction is horizontal: θ(x, y) 2 [67.5˚, 112.5˚]
S

[−112.5˚, −67.5˚]

The 135˚ edge―gradient direction is 45˚: θ(x, y) 2 [22.5˚, 67.5˚]
S

[−157.5˚, −112.5˚)

The horizontal edge―gradient direction is vertical: θ(x, y) 2 [0˚, 22.5˚]
S

[−22.5˚, 0˚]
S

(157.5˚,

180˚]
S

(−180˚, −157.5˚]

The 45˚ edge―gradient direction is 135˚: θ(x, y) 2 [112.5˚, 1577.5˚]
S

[−67.5˚, −22.5˚)

In the 3 × 3 region, for each pixel in the image, there are only four possible directions con-

nected to the adjacent points: 0˚, 45˚, 90˚, and 135˚, as shown in Fig 6 [40].

At the central pixel H(x, y) of each neighborhood is compared with two adjacent pixels

along its corresponding gradient direction θ(x, y). If the gradient value M(x, y) at the center

point is the largest, then the corresponding f(x, y) grayscale value is retained, otherwise, f(x, y)

grayscale value is set to 0. As a result, the non-maximum value suppressed image f 0(x, y) is

obtained.

(4) Using double threshold algorithm to detect and connect edges of gradient images

In order to reduce the pseudo edge points, the double threshold algorithm is used to distin-

guish and connect the edges. If the edge strength is greater than the high threshold, it must be

the edge point. If the edge strength is less than the low threshold, it must not be the edge point.

Fig 5. Sector chart.

https://doi.org/10.1371/journal.pone.0292345.g005

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 9 / 31

https://doi.org/10.1371/journal.pone.0292345.g005
https://doi.org/10.1371/journal.pone.0292345

If the edge intensity is greater than the low threshold and less than the high threshold, then see

if there are any edge points in the adjacent pixels of this pixel that exceed the high threshold, if

so, it is the edge point, if not, it is not the edge point.

Two thresholds, TL and TH, are selected with a ratio of 1:2 or 1:3. For the image f 0(x, y) pro-

cessed by non-maximum value suppression processing, if the gradient value of the pixel is M
(x, y)� TH, then the pixel is marked as an edge pixel, namely, and the f(x, y) grayscale value is

set to 255. If the gradient value of the pixel is M(x, y)� TL, then the pixel is marked as a non-

edge pixel, namely, and the f(x, y) grayscale value is set to 0. If the gradient value of the pixel is

TL<M(x, y)< TH, then the pixel is marked as "quasi-pixel", that is, and the f(x, y) grayscale

value is set to 1. After the double threshold marking is completed, search for "quasi-pixel

points" in the image, and select the positions of its 8 neighborhood points to find out whether

there is a point with gradient value M(i, j)� TH. If it exists, mark the pixel as an edge point,

otherwise, mark the pixel as a non-edge pixel.

3.2.2. Eliminate branches. When using a template to traverse an image, the computation

is out of bounds when traversing to the edge of the image. Therefore, the edge of the image to

be processed is expanded before the calculation begins. The method of dealing with edge pixels

in this paper is to make full use of the similarity of the image and take its own pixels to expand

the original image. Suppose that the size of the original image is H ×H, and the size of the

image after edge expansion is H0 HH0, as shown in Fig 7, the solid line region and the dotted

line region, respectively. When the neighborhood size is n × n, the edges of bn/2c pixels are

filled around the original image. After extended preprocessing, there is no need for branch

processing, which ensures a high degree of unity of the implementation process, and then

improves the parallel potential of the algorithm.

In this paper, the method of even expansion is used to expand the edge of the original

image. First of all, the gray values of all the pixels of the original image are filled into the middle

part of the expanded edge image in turn. Then, fill the left boundary data of the original image

Fig 6. Pixel neighborhood structure.

https://doi.org/10.1371/journal.pone.0292345.g006

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 10 / 31

https://doi.org/10.1371/journal.pone.0292345.g006
https://doi.org/10.1371/journal.pone.0292345

into the corresponding left expansion area of the flared image, as pointed by the red arrow in

Fig 7. Fill the right boundary data of the original image into the corresponding right expansion

area of the flanged image, as pointed by the green arrow in Fig 7. Finally, fill the upper bound-

ary data of the expanded image into the corresponding upper expansion area (including cor-

ners) of the final edge image, as pointed by the black arrow in Fig 7, and fill the lower

boundary data of the expanded image into the corresponding lower expansion area (including

corners) of the final edge image, as pointed by the blue arrow in Fig 7.

3.3. Serial system analysis

The 1024 × 1024 image size was used to test, the data bit depth was 8 bits, and the data format

was BMP. When the CPU is Intel Core i7-8700K and the filter neighborhood size is 3 × 3, the

time-consuming of each calculation step on the CPU is shown in Table 1. It can be seen from

Table 1 that the most time-consuming step of the whole algorithm is the calculation of Canny

Table 1. Time-consuming of each module in the Canny algorithm.

Algorithm steps Time-consuming by CPU (ms) Occupancy time ratio (%)

Read in source image data 2.23 1.20

Extended source image 3.65 1.97

Gaussian template calculation 10.24 5.53

Initialize non-maximum value suppressed image 19.45 10.50

Canny edge detection 147.69 79.72

Output image edge extraction result 2.01 1.08

Total 185.27 100.00

https://doi.org/10.1371/journal.pone.0292345.t001

Fig 7. Boundary processing.

https://doi.org/10.1371/journal.pone.0292345.g007

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 11 / 31

https://doi.org/10.1371/journal.pone.0292345.t001
https://doi.org/10.1371/journal.pone.0292345.g007
https://doi.org/10.1371/journal.pone.0292345

edge detection, which includes the Gaussian filtering process for noisy images. The Canny

edge detection step accounts for about 79.72% of the processing time of the whole Canny sys-

tem. Therefore, the parallel acceleration in this paper will mainly focus on the Canny edge

detection part. This conclusion is also applicable to the Canny edge detection system using

images with different image contents and different image resolutions.

In the calculation process of Canny edge detection, firstly, Gaussian filtering needs to take a

filter window around the calculation point, and convolution calculation is carried out in this

window. Then, the amplitude and direction of the image gradient need to be determined by

using the Sobel operator, and then the gradient amplitude image is suppressed by non-maxi-

mum value, thus the non-maximum value suppression image is obtained. Finally, the double

threshold algorithm is used to distinguish and connect the edges. Each pixel in the image data

is processed in turn. When the image scale is large, the system will produce a large amount of

computation. Therefore, reducing the computing time of Canny edge detection processing is

one of the problems to be solved in this algorithm.

Suppose, the image size is H ×H and the neighborhood size is n × n. Then

Process 1: The time complexity of the process of initializing a non-maximum value suppres-

sion image is O(H2).

Process 2: The time complexity of the step of expanding the edge of the image is O(H2) +

O(H × n).

Process 3: The time complexity of the image Gaussian filtering step is O(H2n2).

Process 4: The time complexity of the process of determining the amplitude and direction of

the image gradient is O(H2n2).

Process 5: The time complexity of non-maximum value suppression of gradient amplitude

image is O(H2).

Process 6: The time complexity of the process of detecting and connecting edges of gradient

images is O(9H2).

Therefore, the total time complexity of the Canny edge detection algorithm is: 2O(H2n2)

+ 3O(H2) + (H × n) + O(9H2). From the above analysis, it can be seen that process 3 ~ 6 is a

functional part of the Canny edge detection algorithm with relatively high time complexity.

Therefore, this paper should mainly focus on the parallel optimization of process 3 ~ 6, that is,

the stage of Canny edge extraction. To sum up, the time complexity of the Canny edge detec-

tion algorithm is O(H2n2).

3.4. Algorithm parallel analysis

The parallelism analysis of the hot step process 3―process 6 in the Canny edge detection algo-

rithm is carried out, and the time complexity of the algorithm is analyzed.

(1) Process 3: From the point of view of the image Gaussian filtering process, the n × n point

multiplication is mainly carried out through the image pixel matrix and the Gaussian tem-

plate matrix. The bottom layer of the algorithm processes a large amount of data, but the

operation process is relatively simple. All pixels in the image can perform the same opera-

tion, there is no data dependence between each point of the target matrix, these operations

can be performed in parallel, and the algorithm is a memory-intensive algorithm. In view

of this, this paper realizes the optimization of the algorithm by improving the memory

access efficiency and making rational use of GPU hardware resources.

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 12 / 31

https://doi.org/10.1371/journal.pone.0292345

(2) Process 4: The calculation of the amplitude and direction of the image gradient is to convo-

lution each pixel with the Sobel operator in the x direction and y direction respectively, and

then calculate the amplitude and direction of the gradient for the pixel. These computing

processes are independent of each other and can be calculated in parallel.

(3) Process 5: Each central pixel is compared with two adjacent pixels in the same gradient

direction to suppress non-maximum value pixels. The comparison process of each group is

only related to the amplitude data of the current comparison pixels, but has nothing to do

with other pixels. Each group of comparison processes can correspond to a work-item, so

that process 5 can be executed in parallel.

(4) Process 6: The process of judging the edge points of pixels by using double thresholds does

not affect each other and is independent of each other. It is beneficial to give full play to the

performance advantages of GPU devices.

To sum up, the hot steps of the Canny edge detection algorithm, process 3―process 6, can

be executed in parallel, which is suitable for implementation on GPU. Therefore, each pixel is

assigned a processing element (PE) to process the corresponding pixel. Because all PEs per-

form the same computing process at the same time, the time complexity of the Canny edge

detection parallel algorithm will be reduced to O(n2), which is a very small level of complexity.

If all pixels are not processed in one kernel function, each PE will perform the Canny edge

detection kernel function at least H2/csum times, where csum is the number of PE included in

the GPU. In this case, the time complexity of the Canny edge detection parallel algorithm will

be O(H2n2/csum). It should be noted that due to the large number of PE included in GPU,

csum is always a large value. Therefore, there exists the time complexity of the Canny parallel

algorithm O(H2n2/csum)� O(H2n2).

4. OpenCL implementation of Canny edge detection algorithm

4.1. Parallel algorithm description

In order to maximize the effective use of GPU hardware multi-work-item resources, the recon-

struction algorithm must strictly follow the OpenCL multi-work-item framework processing

concept. When designing the kernel of image Gaussian blur, the kernel of calculating the

amplitude and direction of image gradient, the kernel of suppressing non-maximum pixels,

and the kernel of judging the edge points of pixels by GPU, the important foundation is that

there is no correlation between pixel-by-pixel calculation. That is, the processing of each pixel

is not related to each other. According to this feature, the Canny edge detection task can be

divided into four kernels using GPU. The main function part of the Canny edge extraction

parallel algorithm is described as follows.
1. Algorithm 1 Canny edge detection parallel algorithm on OpenCL
2. Input: Noisy image matrix srcImageData with image size H × H, array

GassTemplate[0: n × n − 1] of the Gaussian convolution ker-
nel, array SobelTemplate[0: n × n − 1] of the Sobel convolu-
tion kernel, each work-item is responsible for Gaussian
filtering and processing of Sobel convolution in two direc-
tions of BX × BY pixels.

3. Output: Image matrix desImageData with canny edge detection
4. srcImageData input image with an image size H × H
5. srcImageDataEx extended original image
6. GassTemplate[0: n × n − 1] calculate the Gaussian filter template

In the first kernel, the input image is blurred by Gaussian filter to suppress image noise. In

order to improve the operation efficiency, the vectorization processing mode in which a single

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 13 / 31

https://doi.org/10.1371/journal.pone.0292345

work-item is responsible for processing BX × BY pixels is adopted. The OpenCL kernel pseu-

docode that executes Gaussian blur is described below.
1. Initialize the global index gx, gy of the work-item in the x and y

directions, respectively
2. Initialize the local index lx, ly of the work-item in the x and y

directions, respectively
3. for all work-group in NDRange par-do
4. Load the input sub-image data that a work-group need to access from

the global memory into a local memory of size SubImage_ds
5. end for
6. for all work-items in work-group par-do
7. for i = 0 to BX do
8. for j = 0 to BY do
9. for fx = 0 to n − 1 do
10. f for fx = 0 to n − 1 do
11. gaussPixel[i + j * BX] Each work-item in the work-group

does the convolution operation
result of the corresponding
pixel and the Gaussian template

12. end for
13. end for
14. Output gaussPixel[i + j * BX]
15. end for
16. end for
17. end for

In the second kernel, the Sobel operation is performed on the Gaussian blur image to gener-

ate an image with highlighted edges. In order to improve the operation efficiency, the vectori-

zation processing mode is also used to obtain the amplitude and direction of the image

gradient. The OpenCL kernel pseudocode that performs Sobel filtering is described below.
1. for all work-group in NDRange par-do
2. Load the Gaussian filtering sub-image data that a work-group need

to access from the global memory into a local memory of size
SubImage_ds

3. end for
4. for all work-items in work-group par-do
5. for i = 0 to BX do
6. for j = 0 to BYdo
7. for fx = 0 to n − 1 do
8. for fy = 0 to n − 1 do
9. convolution[i, j * BX] Each work-item in the work-group

does the convolution operation
result of the corresponding
Gaussian filtering image pixel
and the Sobel template

10. end for
11. end for
12. Calculate the gradient amplitude and direction of pixels
13. end for
14. end for
15. end for

In the third kernel, non-maximum suppression is performed on Sobel results. The OpenCL

kernel pseudocode that performs non-maximum suppression is described below.
1. for all work-items in NDRange par-do
2. Judge whether the gradient amplitude of the neighborhood center

pixel is the largest in the gradient direction
3. end for

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 14 / 31

https://doi.org/10.1371/journal.pone.0292345

In the fourth kernel, edge detection, and edge connection are performed on the gradient

image. The OpenCL kernel pseudocode that executes marking edge points is described below.
1. for all work-items in NDRange par-do
2. Using double threshold to judge whether the pixel of the gradient

image is an edge point or not
3. end for
4. Transfer Canny edge detection results desImageData from global mem-

ory to host memory

4.2. Calculation process

The edge detection process of the OCL_Canny parallel algorithm is shown in Fig 8.

The first step of the OCL_Canny parallel algorithm is to read the original image file to

obtain image information and to expand the original image according to the size of the neigh-

borhood window. Initialize the edge point image for subsequent calculation. Next, determine

the platform for OpenCL execution, and then determine the device that performs the OpenCL

calculation after determining the platform for execution. Create a context after determining

the device.

After creating the context, you need to create a command queue. The operations such as

extending the original image data transmission, Gaussian template data transmission, initializ-

ing the edge point image, and executing the kernel between the host and OpenCL devices are

all done by queuing up to the command queue, and then the command queue passes each

command to the OpenCL hardware unit for execution.

Fig 8. The OCL_Canny algorithm flow.

https://doi.org/10.1371/journal.pone.0292345.g008

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 15 / 31

https://doi.org/10.1371/journal.pone.0292345.g008
https://doi.org/10.1371/journal.pone.0292345

After that, the kernel code is compiled. First of all, the kernel source code is obtained from

the host side and the program object is created, then the OpenCL device compiles and con-

structs the program object using the kernel source code, and finally constructs the kernel

object to complete the compilation of the kernel code.

When the kernel function needs input parameters to provide calculation data, the corre-

sponding application program interface function is called on the host side to complete the ini-

tialization of the input parameters. In addition, the work-group and work-item parameters

used for execution on the device also need to be set in advance.

After the above operations are completed, the queuing operation is carried out, and the ker-

nel function is sent to the corresponding command queue through the queuing command.

The computing device interacts with the command queue and executes the corresponding ker-

nel functions. The kernel functions of the OCL_Canny parallel algorithm include generating

Gaussian filtered image kernel, generating gradient image kernel, generating edge point image

kernel, and generating edge image kernel.

The operation of the kernel function is mainly the calculation and update of the incoming

parameter variable, and the next call is the update status of the variable, and the four kernels

are executed serially through CPU control. The execution process of the corresponding kernel

function in this paper is as follows:

①Gaussian filtered image kernel. According to Eq (1), the extended image data is convoluted

with the Gaussian template data and the information is updated.

②Gradient image kernel. According to Eqs (2) ~ (4), the Gaussian smoothing image data is

convoluted with the Sobel template data, and the gradient amplitude and direction of the

corresponding pixels are calculated.

③ Edge point image kernel. The gradient image is suppressed by non-maximum value, and

the edge points of the image are preliminarily determined.

④ Edge image kernel. The edge points of the image are finally determined and connected by

the double threshold method.

After the OpenCL device performs the calculation, it transmits the results of Canny edge

detection back to the host side and destroys the allocated resources.

4.3. Acceleration strategy of the algorithm

The Canny edge detection algorithm has obvious data computing parallelism. The processing

of Gaussian filtering, calculating the gradient of the image, suppressing non-maximum value

pixels, and judging edge points with double thresholds are only related to the position of the

image pixels, and the calculation process of each pixel is exactly the same.

The mapping between the pixel and the OpenCL core mainly lies in the one-to-one logical

correspondence between the work-item and the pixel. Fig 9 shows the mapping relationship

between the NDRange workspace of the GPU and the image data matrix. The image frame H
×H image data is arranged according to the one-dimensional linear organization in the system

and can be decomposed into several non-overlapping sub-image blocks. Each sub-image block

contains some pixels of the image. The kernel function creates an NDRange workspace that

identifies the index, as shown in the lower dotted frame in Fig 9. Through the mapping of

OpenCL work-items to image pixels, each OpenCL work-item uses a unique work-item index

to calculate the data that needs to be processed to achieve maximum parallelism.

Processing more data in a shorter time has always been one of the goals of high-perfor-

mance computing. OCL_Canny parallel algorithm proposes a vectorization method to process

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 16 / 31

https://doi.org/10.1371/journal.pone.0292345

multiple pixels at a time for each work-item. In the algorithm, the Gaussian filtering operation

and the Sobel image gradient operation of four adjacent pixels in the sub-image block are

scheduled on one work-item in turn. The calculation of the four output results is completed

on the same work-item, and each cycle can complete the calculation of the output result of one

pixel, thus completing the traversal of the four pixels. The coordinate transformation of the

pixel is shown in Eq (5).

lx ¼ get local id 0ð Þ; ly ¼ get local id 1ð Þ

gx ¼ get global id 0ð Þ; gy ¼ get global id 1ð Þ
ð5Þ

Among them, lx, ly represents the local ID of the work-item in the x, y direction respectively

in the work-group. gx, gy represents the global ID of work-items in the x, y direction respec-

tively in the workspace. Through the four variables, the precise scheduling of OpenCL work-

items can be completed.

4.4. Algorithm optimization

4.4.1. Data storage adjustment.

(1) Local memory optimization

In the processing of the four tasks of the Canny operator, the calculation of the boundary

points in the work-group needs to cross the boundary. In order to prevent the image from

crossing the boundary, the original image is extended to an expanded image in this paper.

Suppose the template size is n × n and the original image size is H × H. When calculating

the Gaussian filter, gradient amplitude, and direction, the size of the expanded image is

Fig 9. Corresponding relation of the work-item index and image pixel coordinate.

https://doi.org/10.1371/journal.pone.0292345.g009

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 17 / 31

https://doi.org/10.1371/journal.pone.0292345.g009
https://doi.org/10.1371/journal.pone.0292345

(H + n − 1) × (H + n − 1). In this case, the basic data area size of non-maximum value sup-

pression and double threshold judgment of gradient image is H × H, then the size of the

extended data area is also(H + n − 1) × (H + n − 1).

Because the local memory is located on the GPU, the local memory has higher bandwidth

and lower latency than the global memory, and the access speed of the local memory is much

higher than that of the global memory. In the OCL_Canny parallel algorithm with global

memory, it is necessary to access the global memory (H + n − 1)2 × n2 × 4 times. By fetching

the extended data area data from the global memory to the local memory, and taking the local

memory as the memory for accessing the data when the work-item is calculated, the number

of visits to the global memory is reduced to (H + n − 1)2 × 2n × 4 times. Therefore, the opti-

mized OCL_Canny parallel algorithm can significantly reduce the number of times of access-

ing global memory and greatly improve the access efficiency of the GPU.

(2) Constant memory optimization

In the OCL_Canny parallel algorithm, image preprocessing and image gradient calculation

are completed under convolution computation. Since the convolution operation of the image

needs to traverse the image pixels, when processing each pixel, it is necessary to read the corre-

sponding pixels in the n2 neighborhood to multiply and add with the Gaussian template and

the Sobel template. It requires frequent access to memory and the calculation is very time-con-

suming. Considering that the constant memory has a cache mechanism when the access is hit,

there is only one clock cycle delay. Therefore, in order to improve the access efficiency, the

Gaussian template and the Sobel template are stored in the constant memory for all work-

items to read. The constant memory has a 64 KB cache, and the storage space needed to store

the Gaussian template and the Sobel template is (3n2 × 4) B, which meets the maximum space

requirements of the constant memory of 64 KB.

(3) Data reusability

From the processing flow of the Canny operator, we can see that each step of the algorithm

is designed with a kernel, which is implemented with four kernels. Because there is a logical

correlation between the kernel, that is, the results after the execution of the previous task need

to be provided to the next task. Therefore, each kernel can store the calculation results in the

global memory and wait for the next kernel to be read. By improving the data reusability, the

data transmission times between CPU and GPU are reduced, thus the memory communica-

tion delay is hidden.

4.4.2. NDRange optimization. According to different GPU hardware, change the num-

ber of work-items in each work-group in the kernel function to achieve optimal performance.

If the number of work-items is too small, it will cause most of the PEs to be idle, waste

resources, and low performance. If the number of work-items is too large, due to the limitation

of hardware resources, it may not be possible to actually start enough active work-items, which

will cause too many work-items to be in a blocked state and also cause performance degrada-

tion. Therefore, in order to ensure the optimal performance of the OCL_Canny parallel algo-

rithm on the GeForce GTX 1050 graphics card, the operation time of the algorithm is

Table 2. Operation time of the OCL_Canny parallel algorithm.

Image size Parallel time corresponding to different work-group sizes (ms)

4×4 8×8 16×16 24×24 32×32

256×256 3.87 3.62 3.02 3.58 4.27

512×512 6.75 5.09 4.28 5.01 5.39

1024×1024 20.78 12.78 10.31 12.66 13.42

https://doi.org/10.1371/journal.pone.0292345.t002

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 18 / 31

https://doi.org/10.1371/journal.pone.0292345.t002
https://doi.org/10.1371/journal.pone.0292345

measured under different work-group dimensions, and the specific test data are shown in

Table 2.

It can be seen from the above experimental results that for GeForce GTX 1050 graphics

cards, the maximum number of work-items per work-group is 1024. An error will be reported

when running over this number. At the same time, 16 × 16 is also the best operating efficiency

point.

5. Other parallel schemes

5.1. The OMP_Canny parallel algorithm

The parallel processing of the Canny edge detection algorithm is realized by using OpenMP

parallel technology. With the addition of parallel task scheduling at the top level, this coarse-

grained parallel processing method can realize Gaussian filtering, calculating image gradient,

suppression of non-maximum value pixels, and parallel computing of edge points judged by

double thresholds. This paper mainly adopts the static scheduling mode, and the specific paral-

lel process: when m CPU cores are allocated to process the image size H ×H, each core (or

thread) will process (H ×H)/m image data.

The parallel model of OpenMP is in the form of Fork-Join, and the area between Fork and

Join is a parallel region. When the original thread encounters a parallel structure instruction, it

creates a thread group and executes the next instruction in parallel, that is, the Fork action.

When exiting the parallel structure, only the original thread continues to execute, and the

other threads end, that is, the Join action. The OMP_Canny parallel algorithm executes the

Fork action to open the parallel region at the starting position of the Gaussian filtering opera-

tion, and executes the Join action to end the parallel region when the detection of all edge

points of the image is completed, thus forming the following four parallel regions.

(1) Parallel region of smooth image. First, initialize the variable, then convolution the neigh-

borhood of the pixel with the Gaussian filter template, and finally, update the convolution

value back to the corresponding position of the image.

(2) The parallel region that determines the amplitude and direction of the image gradient.

Firstly, the variables are initialized in x, y direction, and then the neighborhood of the pixel

after the Gaussian filter is convoluted with the Sobel filter template in x, y direction, respec-

tively. Finally, the gradient amplitude and gradient direction of the pixel are calculated.

(3) Determine the parallel region of the non-maximum value suppressed gradient image.

According to the gradient direction of the pixel, the pixel is suppressed by non-maximum

value, and the non-maximum value suppression image is obtained.

(4) Determine the parallel region of image edge points. Using a double threshold algorithm to

detect edge points and connect the edges of non-maximum value suppressed images.

5.2. The CUDA_Canny parallel algorithm

According to the parallelism analysis of the Canny algorithm, there are obvious data computa-

tional parallelism in image Gaussian filtering, calculating the amplitude and direction of image

gradient, non-maximum value suppression gradient image generation, and image edge point

detection. The mapping between the image and the execution thread mainly lies in the corre-

spondence between the pixel and the CUDA thread. If the image size is H ×H and the GPU

has a streaming multiprocessors, the image data of H ×H size is inputted into the GPU

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 19 / 31

https://doi.org/10.1371/journal.pone.0292345

memory. In the software architecture, each GPU streaming multiprocessor contains b thread

blocks and each thread block contains c threads, so it can be calculated that each thread can

complete the Gaussian filtering processing of (H ×H)/(a×b×c) pixels. The parallel processing

of the gradient amplitude and gradient direction of each pixel is the same. In the experiment

of CUDA_Canny parallel algorithm implementation, the GPU used is GTX 1050 with 24

streaming multiprocessors, each streaming multiprocessor contains 32 thread blocks, and each

thread block has 1024 threads.

6. Data testing and result discussion

6.1. Experimental conditions

(1) The hardware platform is built. This experimental scheme uses two different environments

with heterogeneous computing capabilities, and the specific hardware configuration infor-

mation is shown in Table 3.

(2) The software platform is built. The operating system is Microsoft Window 10 64-bit, the

GPU application programming interface is CUDA 10.2, the OpenCL version is AMD APP

SDK 3.0, and the development environment is Microsoft Visual Studio 2017.

6.2. Image quality evaluation

6.2.1. Visual effect comparison. In order to verify the effectiveness of this method, five

images are selected as test objects. The resolutions of the images "Boats", "Peppers", "Bird",

"Flower" and "Light-house" are 720×576, 256 × 256, 990×650, 1024×1024 and 512 × 512,

respectively. Four serial/parallel Canny edge detection algorithms are tested and the experi-

mental results are shown in Fig 10.

As can be seen from Fig 10, the Boats result image is basically connected and undiscon-

nected, with good coherence and high definition. The outline lines of many kinds of chili

peppers in the Peppers image are basically smooth. The outline lines of the beak and tail

Table 3. Performance parameters of GPU Computing platform.

Configuration

number

CPU type CPU

frequency

Memory/

GB

GPU type Video

memory

Number of GPU

cores

Number of

SM

Number

of

blocks per

SM

Number of

threads

per

block

Configuration 1 Intel Core i7-8700K

(six cores)

3.7 GHz 4 Geforce GTX

1050

3 GB

GDDR5

768 24 32 1024

Configuration 2 AMD Ryzen 5 3600XT

(six cores)

3.8 GHz 4 Radeon RX

560

4 GB

GDDR5

896 28 32 1024

https://doi.org/10.1371/journal.pone.0292345.t003

Boats

Peppers

Bird

Flower

Lighthouse

(a) Original

image

(b) CPU_Canny edge

detection result

(c) OpenMP_Canny edge

detection result

(d) CUDA_Canny edge

detection result

(e) OpenCL_Canny edge

detection result

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 20 / 31

https://doi.org/10.1371/journal.pone.0292345.t003
https://doi.org/10.1371/journal.pone.0292345

feathers in the Bird image are very clear and smooth, with almost no breakpoints. The out-

line of the petals in the Flower image is closed and can be seen clearly. The texture of the

exterior wall, the fence, and the edges of the eaves are very clear in the Light-house result

image.

Fig 10. Edge detection effect images of four different Canny algorithms.

https://doi.org/10.1371/journal.pone.0292345.g010

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 21 / 31

https://doi.org/10.1371/journal.pone.0292345.g010
https://doi.org/10.1371/journal.pone.0292345

It can be seen from Fig 10 that the effects of the serial Canny algorithm and optimized accel-

erated algorithm are basically the same, and the four edge detection operators can obtain

image edges more accurately. The above experiments show that the OCL_Canny parallel algo-

rithm is feasible.

6.2.2. Comparison of evaluation parameters. In order to evaluate the effect of image

edge detection, the average gradient value of the image is selected as the evaluation parameter.

The Average Gradient (AG) is also called image sharpness, which is an indicator of the rate of

gray change in image. The average gradient is defined as:

Dx i; jð Þ ¼ I i; jð Þ � I iþ 1; jð Þ ð6Þ

Dy i; jð Þ ¼ I i; jð Þ � I i; jþ 1ð Þ ð7Þ

AG ¼
1

M � N

XM� 1

i¼0

XN� 1

j¼0

ffi
1

2
D2

x i; jð Þ þ D2
y i; jð Þ

� �
r

ð8Þ

Among them, Dx(i, j), Dy(i, j) denotes the gradient of the image in the x direction and y
direction respectively. I(i, j) is the gray value of the image (i, j), (i, j) is the position index of the

pixel in the image, and the image frame size of the image I is M × N. The image average gradi-

ents of different Canny edge detection algorithms are shown in Table 4.

As can be seen from Table 4, the average gradient of the OCL_Canny parallel algorithm on

the test image set is larger than that of the original image, indicating that the algorithm in this

paper is the best in preserving edge details. At the same time, the average gradient data of the

test image under serial/parallel Canny edge extraction are the same. It shows that the OCL_-

Canny parallel algorithm is correct and feasible.

Standard deviation is the first-order and second-order statistical characteristics of the gray

values of all pixels in an image, which mainly reflects the overall average brightness and con-

trast of the image. The specific definition is as follows:

m ¼
1

M � N

XM� 1

i¼0

XN� 1

j¼0

I i; jð Þ; s ¼

ffi

1

M � N

XM� 1

i¼0

XN� 1

j¼0

I i; jð Þ � mð Þ
2

v
u
u
t ð9Þ

Where μ is the average gray-scale of the image and σ is the standard deviation of the image.

The standard deviations of the processing results of different Canny edge detection algorithms

are shown in Table 5.

As can be seen from Table 5, the standard deviation of the OCL_Canny parallel algorithm

on the test image set is larger than that of the original image, indicating that the result pro-

cessed by this algorithm has high contrast and more edge information is extracted. At the

same time, the standard deviation data of the test image under serial/parallel Canny edge

Table 4. The average gradient of the Canny edge detection algorithm in different images.

Image name No

processing

CPU_

Canny

OMP_

Canny

CUDA_

Canny

OCL_

Canny

Boats 6.64 13.23 13.23 13.23 13.23

Peppers 7.51 19.06 19.06 19.06 19.06

Bird 2.67 4.26 4.26 4.26 4.26

Flower 3.12 18.21 18.21 18.21 18.21

Lighthouse 13.08 30.64 30.64 30.64 30.64

https://doi.org/10.1371/journal.pone.0292345.t004

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 22 / 31

https://doi.org/10.1371/journal.pone.0292345.t005
https://doi.org/10.1371/journal.pone.0292345

extraction are the same. It shows that the OCL_Canny parallel algorithm is correct and

feasible.

6.3. Analysis of experimental data

6.3.1. Operation time comparison. In order to verify the high performance of the pro-

posed algorithm, nine groups of images of different sizes are selected for experimental analysis.

CPU_Canny algorithm, OMP_Canny algorithm, and CUDA_Canny algorithm measured the

execution time in the configuration 1 environment, while the OCL_Canny algorithm mea-

sured execution time in the configuration 1 and configuration 2 environment, respectively.

After many times of execution, the average value of the system is taken as the execution time.

The time-consuming statistics are shown in Table 6.

In order to more intuitively analyze the time characteristics of the Canny algorithm, it is

shown in Fig 11. As can be seen from Fig 11, with the continuous increase of the size of nine

groups of images, the time-consumption of the Canny algorithm under different computing

architectures increases linearly. The time-consuming of the CPU_Canny serial algorithm is

gradually approaching to O(H2n2). The experimental results are consistent with the theoretical

analysis of time complexity. The time-consuming curve of the Canny algorithm under

OpenMP architecture shows a steady upward trend of a small slope. On the other hand, the

time-consuming curve of the Canny algorithm under CUDA and OpenCL architecture almost

coincides with the horizontal axis in the graph, that is, the time-consuming change of the algo-

rithm is very small with the increase of the amount of data processed. The time complexity of

the Canny edge detection parallel algorithm O(H2n2/tsum) reflects that the time consumption

of the parallel algorithm does not increase significantly with the increase of image resolution.

Table 6. Time-consuming comparison of Canny algorithms under different architectures.

Image resolution (px) CPU_Canny (ms) Parallel time (ms)

OMP_Canny CUDA_Canny OCL_Canny (AMD) OCL_Canny (NVIDIA)

256×256 9.45 2.90 3.26 3.14 3.02

512×512 40.12 11.33 4.59 4.41 4.28

1280×720 103.26 27.46 11.02 10.24 9.87

1024×1024 147.69 35.58 12.49 10.68 10.31

1600×1200 309.26 67.67 21.11 19.42 18.34

2048×1536 548.43 112.85 31.83 29.05 28.74

3500×3500 2311.45 459.54 120.29 117.62 115.97

4828×4828 4024.03 762.13 207.96 204.61 199.80

7452×8024 10105.12 1867.84 516.74 513.15 488.64

https://doi.org/10.1371/journal.pone.0292345.t006

Table 5. The standard deviation of the Canny edge detection algorithm in different images.

Image name No

processing

CPU_

Canny

OMP_

Canny

CUDA_

Canny

OCL_

Canny

Boats 49.19 63.14 63.14 63.14 63.14

Peppers 53.26 80.32 80.32 80.32 80.32

Bird 21.85 37.61 37.61 37.61 37.61

Flower 49.56 52.58 52.58 52.58 52.58

Lighthouse 53.68 101.34 101.34 101.34 101.34

https://doi.org/10.1371/journal.pone.0292345.t005

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 23 / 31

https://doi.org/10.1371/journal.pone.0292345.t007
https://doi.org/10.1371/journal.pone.0292345.t006
https://doi.org/10.1371/journal.pone.0292345

The time-consuming trend of the OCL_Canny parallel algorithm in Fig 11 is basically consis-

tent with the situation reflected in its time complexity.

Literature [15] and literature [17] reported the implementation results of the Canny algo-

rithm under CUDA architecture, literature [16] reported the implementation results of the

Canny algorithm under OpenCL architecture, and literature [11] reported the implementation

results of the Canny algorithm under FPGA computing architecture. The data shown in these

literatures are compared with the time-consuming of the algorithms in this paper, as shown in

Table 7. According to Table 7, the Canny serial algorithm implemented in references [11, 15,

17] takes more time to run on the six groups of images involved than the CPU_Canny algo-

rithm in this paper. The four parallel algorithms in literature [11], literature [15], literature

[16], and literature [17] all consume significantly more time than the CUDA_Canny and

OCL_Canny parallel algorithms in this paper on the 10 sets of images involved. Therefore, the

OCL_Canny parallel algorithm has the advantage of time-consuming compared with other

schemes.

In order to describe the performance of the OCL_Canny parallel algorithm more accu-

rately, the computing time of three core kernel tasks in the OCL_Canny parallel algorithm is

compared with the data in the literature [18]. Because the gray-scale image is input in the

Table 7. Comparison of operation time in related literature (1).

Image

resolution (px)

CPU algorithm (ms) CUDA algorithm (ms) Literature

[11]

OpenCL algorithm (ms)

Literature

[11]

Literature

[15]

Literature

[17]

CPU_

Canny

Literature

[15]

Literature

[17]

CUDA_

Canny

Literature

[16]

OCL_Canny

(NVIDIA) (NVIDIA)

256×256 — 10.00 — 9.45 5.00 — 3.26 — — 3.02

512×512 78.24 41.00 — 40.12 22.00 — 4.59 4.61 — 4.28

640×480 — — 270.74 61.44 — 106.51 4.80 — — 4.37

1280×720 — — — 103.26 — — 11.02 — 19.04 9.87

1024×1024 — 149.00 — 147.69 82.00 — 12.49 — — 10.31

1600×1200 — — — 309.26 — — 21.11 — 39.46 18.34

2048×1536 — — — 548.43 — — 31.83 — 58.03 28.74

4096×2160 — — 7332.31 1513.40 — 405.64 70.52 — — 67.86

3500×3500 — — — 2311.45 — — 120.29 — 239.89 115.97

10240×10240 — — 111740.55 19326.90 — 1643.23 813.97 — — 810.25

https://doi.org/10.1371/journal.pone.0292345.t007

Fig 11. Time-consuming analysis of the Canny algorithm.

https://doi.org/10.1371/journal.pone.0292345.g011

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 24 / 31

https://doi.org/10.1371/journal.pone.0292345.t008
https://doi.org/10.1371/journal.pone.0292345.g011
https://doi.org/10.1371/journal.pone.0292345

experiment, the performance comparison of the gray-scale kernel is no longer carried out. In

addition, the computing time of the CPU_Canny algorithm is also compared with that of the

serial algorithm in literature [18], so that the performance of the OCL_Canny parallel algo-

rithm can be explained more accurately. The specific data are shown in Table 8.

According to Table 8, under two groups of test images, on the one hand, the computing

time of the CPU_Canny serial algorithm is much shorter than that of serial implementation in

literature [18]. The total time in Table 8 includes only the execution parts that are closely

related to the three kernel tasks. The operation time in Table 7 includes not only the time in

Table 8 but also the execution time of system initialization, dynamic generation of the Gauss-

ian template, image edge expansion, and so on. The Suppression Kernel data for the OCL_-

Canny algorithm in Table 8 includes two execution tasks: non-maximum suppression and

marking edge points. On the other hand, the operation time of the three kernels of the OCL_-

Canny parallel algorithm is shorter than that of the literature [18]. This shows that the parallel

optimization effect of the most core computing task in the Canny algorithm is better. How-

ever, the total execution time of the OCL_Canny parallel algorithm is higher than that of the

literature [18]. The main reasons are as follows: (1) the calculation range of the OCL_Canny

parallel algorithm is the expanded edge image H0 ×H0, not the original image H ×H. (2) the

total execution time of the OCL_Canny parallel algorithm includes the kernel computation

time, data transmission time between host and device, storage space allocation time, and so

on. However, the coverage of the total execution time in the literature [18] is not clear.

When the image resolution is 640 × 480, the ratio of computing time between the host and

the GPU device is (4.37 − 1.37)/1.37 = 2.19. When the image resolution is 1280 × 720, the ratio

of computing time between the host and the GPU device is (9.87 − 3.07)/3.07 = 2.21. This

shows that the time consumed by the host in the OCL_Canny parallel algorithm is about twice

as long as that of the GPU device.

6.3.2. Accelerated performance analysis.

(1) Speedup discussion

In order to select a high-performance Canny parallel algorithm, the speedup is used as the

performance measure.

Definition 1: speedup SOMP is defined as the time-consuming comparison between the

CPU_Canny serial algorithm and the OMP_Canny parallel algorithm. The calculation equa-

tion of SOMP is

SOMP ¼
TCPU Canny

TOMP Canny
ð10Þ

Definition 2: speedup SCUDA is defined as the time-consuming comparison between the

CPU_Canny serial algorithm and the CUDA_Canny parallel algorithm. The calculation

Table 8. Comparison of operation time in related literature (2).

Image resolution (px) CPU algorithm (ms) GPU algorithm (ms)

640×480 1280×720 640×480 1280×720

Comparison object Literature [18] CPU_

Canny

Literature [18] CPU_

Canny

Literature [18] OCL_Canny (NVIDIA) Literature [18] OCL_Canny (NVIDIA)

Gaussian Blur Kernel — 0.04 0.03 0.12 0.11

Sobel Filter Kernel 0.33 0.11 0.94 0.29

Suppression Kernel 0.06 0.04 0.16 0.12

Total 54.73 33.10 166.19 99.01 0.51 1.37 1.35 3.07

https://doi.org/10.1371/journal.pone.0292345.t008

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 25 / 31

https://doi.org/10.1371/journal.pone.0292345.t009
https://doi.org/10.1371/journal.pone.0292345

equation of SCUDA is

SCUDA ¼
TCPU Canny

TCUDA Canny
ð11Þ

Definition 3: speedup SOCL is defined as the time-consuming comparison between the

CPU_Canny serial algorithm and the OCL_Canny parallel algorithm on the corresponding

GPU platform. The calculation equation of SOCL is

SOCL ¼
TCPU Canny

TOCL Canny
ð12Þ

Definition 4: relative speedup RSCMP-OCL is defined as the time-consuming comparison

between the OMP_Canny parallel algorithm and the NVIDIA GPU-based OCL_Canny paral-

lel algorithm. The calculation equation of RSCMP-OCL is

RSOMP� OCL ¼
TOMP Canny

TOCL Canny
ð13Þ

Definition 5: relative speedup RSCUDA-OCL is defined as the time-consuming comparison

between the CUDA _ Canny parallel algorithm and the NVIDIA GPU-based OCL_Canny par-

allel algorithm. The calculation equation of RSCUDA-OCL is

RSCUDA� OCL ¼
TCUDA Canny

TOCL Canny
ð14Þ

The speedup achieved by the OMP_Canny, CUDA_Canny, and OCL_Canny parallel algo-

rithms on each group of test images is shown in Table 9.

Fig 12 shows the speedup change of the Canny parallel algorithm under different image

data sizes. Under different parallel computing architectures, the Canny algorithm achieves a

certain speedup. With the increase of image resolution, SOMP gradually becomes larger, indi-

cating that the acceleration effect of the OMP_Canny parallel algorithm is more obvious when

dealing with large images. When the image resolution is low, the acceleration effect of the

CUDA_Canny and OCL_Canny parallel algorithms is not obvious. Because GPU computing

needs to transfer computing data through a low-speed PCI-E bus, and the number of work-

items started is not enough to hide the time overhead of data transfer and kernel function

startup, that is, the performance improvement brought by many-core computing cannot offset

Table 9. Acceleration effect of the Canny algorithm on different platforms.

Image resolution

(px)

Speedup Relative speedup

SOMP SCUDA SOCL (AMD) SOCL (NVIDIA) RSOMP-OCL RSCUDA-OCL

256×256 3.26 2.90 3.01 3.13 0.96 1.08

512×512 3.54 8.74 9.10 9.37 2.65 1.07

1280×720 3.76 9.37 10.08 10.46 2.78 1.12

1024×1024 4.15 11.82 13.83 14.32 3.45 1.21

1600×1200 4.57 14.65 15.92 16.86 3.69 1.15

2048×1536 4.86 17.23 18.88 19.08 3.93 1.11

3500×3500 5.03 19.22 19.65 19.93 3.96 1.04

4828×4828 5.28 19.35 19.67 20.14 3.81 1.04

7452×8024 5.41 19.56 19.69 20.68 3.82 1.06

https://doi.org/10.1371/journal.pone.0292345.t009

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 26 / 31

https://doi.org/10.1371/journal.pone.0292345.t010
https://doi.org/10.1371/journal.pone.0292345

the additional communication and function startup time overhead brought by heterogeneous

architecture. With the increase of image resolution, the computation shifts from I/O-intensive

to computing-intensive. When the image resolution is less than 2048 × 1536, the speedup of

the OCL_Canny parallel algorithm increases faster. However, when the image resolution

exceeds 2048 × 1536, the slope of the SOCL(NVIDIA) curve gradually smooths and tends to be

stable, and the OCL_Canny parallel algorithm achieves a speedup of 20.68 times.

Table 10 shows the acceleration effect of CUDA_Canny and OCL_Canny parallel algorithms

and related literature on three groups of images. As can be seen from the table, when dealing

with small images, the acceleration effect of the data in Literature [15] is similar to that of the

OCL_Canny parallel algorithm. With the expansion of the image frame, the growth rate of

SCUDA and SOCL(NVIDIA) is faster than that of Literature [15], indicating that the OCL_Canny

parallel algorithm is more suitable for the fast processing of large images than Literature [15].

Fig 13 visually shows the performance comparison among the three parallel algorithms

OMP_Canny, CUDA_Canny, and OCL_Canny. As can be seen from Fig 13, when the image

is small, the OCL_Canny parallel algorithm has no obvious performance advantage over the

OMP_Canny parallel algorithm. The OCL_Canny parallel algorithm needs data exchange

between memory and video memory, which degrades the performance of the OCL_Canny

parallel algorithm. However, when the image is larger, the number of work-items started is

more, the proportion of kernel function execution time is reduced, and the large value RSOM-

P-OCL reflects the strong data processing ability of the GPU. The acceleration ability of the

CUDA_Canny and OCL_Canny parallel algorithms is basically the same and RSCUDA-OCL
achieves a maximum acceleration advantage of 1.21 times. This is mainly because the OCL_-

Canny parallel algorithm adopts the method of offline compiling kernel read and write data

Fig 12. Performance acceleration of the Canny algorithm.

https://doi.org/10.1371/journal.pone.0292345.g012

Table 10. Comparison of acceleration ratio of related literature.

Image resolution (px) Speedup

Literature [15] SCUDA SOCL (NVIDIA)

256×256 2.00 2.90 3.13

512×512 1.86 8.74 9.37

1024×1024 1.81 11.82 14.32

https://doi.org/10.1371/journal.pone.0292345.t010

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 27 / 31

https://doi.org/10.1371/journal.pone.0292345.g012
https://doi.org/10.1371/journal.pone.0292345.t011
https://doi.org/10.1371/journal.pone.0292345

files, which reduces the application initialization time compared with the method of online

compiling kernel read and write data files by the CUDA_Canny parallel algorithm.

(2) Discussion on portability of the OCL_Canny parallel algorithm

As can be seen from Fig 12, the OCL_Canny parallel algorithm has a good acceleration

effect on different GPU platforms. At the same time, the values of SOCL(AMD) and SOCL(NVI-

DIA) are very similar in nine groups of images with different image sizes. It shows that the

OCL_Canny parallel algorithm has good platform scalability and data scalability.

6.3.3. System bottleneck analysis. In the operation and execution of the OCL_Canny

algorithm based on GPU acceleration, there are a large number of memory read and write

operations in the processing steps of Gaussian filtering, image gradient calculation, image

non-maximum value suppression, and edge detection. According to the previous analysis, in

the kernel operation of the Gaussian filter, the system needs to read H2 × n2 times and write H2

times to the extended image. In calling the kernel operation to calculate the image gradient, it

is necessary to read data H2 × n2 times for the extended image and write data 2 ×H2 times for

the amplitude and direction of the image gradient. In calling the kernel operation of the non-

maximum value suppression of the image, it is necessary to read data 2 ×H2 times for the

amplitude and direction of the image gradient and write data H2 times for the original image.

In calling the kernel operation of edge detection, it is necessary to read data H2 times for the

amplitude of the image gradient and write data H2 times for the original image. Therefore, in

the operation and execution of the OCL_Canny algorithm, a total of 2 ×H2 × n2 + 8 ×H2

memory data are needed to read and write. Suppose, the image resolution is 2048 × 1536, the

size of the filter template is 3 × 3, and each pixel takes up 4 B storage space. According to the

calculation, the total amount of image data accessed by the OCL_Canny system is about 0.3

GB. The total amount of image data divided by the running time of the kernel 4.81 ms, which

shows that the bandwidth of the OCL_Canny system is about 62.37 GB/s. At this point, the

actual bandwidth of the system is close to the bandwidth 84 GB/s of GeForce GTX 1050.

Therefore, the global memory bandwidth has become the main performance bottleneck of the

OCL_Canny system.

Fig 13. Performance comparison between different parallel Canny algorithms.

https://doi.org/10.1371/journal.pone.0292345.g013

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 28 / 31

https://doi.org/10.1371/journal.pone.0292345.g013
https://doi.org/10.1371/journal.pone.0292345

7. Conclusion

With the rapid development of GPU, GPU is used more and more widely, and the advantage

of GPU parallel computing is increasing day by day. At the same time, the requirements for

the performance and optimization of parallel computing are getting higher and higher.

Through the research on the parallel transplantation and optimization of the Canny edge

detection algorithm, this paper puts forward the following three suggestions: (1) For large-

scale computing-intensive tasks, the performance of the algorithm can be improved through

the parallel computing of the GPU. At the same time, the overall performance can be improved

through the cooperation of heterogeneous platforms GPU and CPU. (2) Memory access opti-

mization plays an important role in improving the performance of the overall algorithm.

Therefore, the efficiency of memory access can be improved by means of vectorization, data

localization, and fine tuning. (3) In order to achieve efficient mapping between threads and

the underlying hardware, it is necessary to consider the characteristics of hardware architec-

ture and image processing algorithms, and use several optimization strategies to achieve high-

performance algorithms. The experimental results show that the OCL_Canny parallel algo-

rithm achieves a performance speedup of 3.13 times ~ 20.68 times under different image data

sizes. It provides a theoretical basis for other image processing algorithms and improves the

engineering application value of the image edge detection algorithm.

In the future research, we are going to apply higher performance GPU and CPU to the par-

allel algorithm of the Canny edge detection. But in fact, when the performance of the GPU has

improved significantly, the performance of the CPU should also be improved at the same time.

Otherwise, when the performance of the GPU far exceeds that of the CPU, the use of heteroge-

neous systems will make the operation speed slower than that of GPU systems. This is because

high-performance GPU can quickly complete a large number of tasks with high concurrency

in a short time, while data transmission tasks can only be performed by CPU serial. When

CPU performance is poor, too much time is spent on transferring data and fewer tasks can be

assigned to the CPU. Therefore, improving the performance of the CPU will further optimize

the data transmission between the host and the device, and make GPU work at full load, which

will greatly improve the computing speed of the heterogeneous system.

Author Contributions

Conceptualization: Yupu Song, Cailin Li, Shiyang Xiao, Qinglei Zhou.

Data curation: Yupu Song, Cailin Li, Shiyang Xiao.

Formal analysis: Yupu Song, Shiyang Xiao, Han Xiao.

Funding acquisition: Cailin Li, Qinglei Zhou, Han Xiao.

Methodology: Yupu Song, Cailin Li, Shiyang Xiao.

Software: Shiyang Xiao.

Supervision: Cailin Li, Qinglei Zhou.

Writing – original draft: Yupu Song, Cailin Li, Han Xiao.

Writing – review & editing: Shiyang Xiao, Han Xiao.

References
1. Taslimi S, Faraji R, Aghasi A, Naji HR. Adaptive edge detection technique implemented on FPGA. Ira-

nian Journal of Science and Technology-Transactions of Electrical Engineering. 2020; 44(4):1571–

1582. https://doi.org/10.1007/s40998-020-00333-5

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 29 / 31

https://doi.org/10.1007/s40998-020-00333-5
https://doi.org/10.1371/journal.pone.0292345

2. Morar A, Moldoveanu F, Asavei V, Moldoveanu A, Egner A. Multi-GPGPU based medical image pro-

cessing in hip replacement. Control Eng Appl Inf. 2012; 14(3):25–34. https://doi.org/

WOS:000309372900004

3. Dhivya R, Prakash R. Edge detection of satellite image using fuzzy logic. Cluster Comput. 2019; 22

(5):11891–11898. https://doi.org/10.1007/s10586-017-1508-x

4. Al Badawi A, Veeravalli B, Lin J, Xiao N, Kazuaki M, Mi AKM. Multi-GPU design and performance evalu-

ation of homomorphic encryption on GPU clusters. IEEE T Parall Distr. 2021; 32(2):379–391. https://

doi.org/10.1109/TPDS.2020.3021238

5. Wisultschew C, Perez A, Otero A, Mujica G, Portilla J. Characterizing deep neural networks on edge

computing systems for object classification in 3D point clouds. IEEE Sens J. 2022; 22(17):17075–

17089. https://doi.org/10.1109/JSEN.2022.3193060

6. Liu XX, Mao MJ, Bi XY, Li H, Chen YR. Exploring applications of STT-RAM in GPU architectures. IEEE

T Circuits-I. 2021; 68(1):238–249. https://doi.org/10.1109/TCSI.2020.3031895

7. Canny J. A computational approach to edge detection. IEEE T Pattern Anal. 1986; 8(6):679–698.

https://doi.org/10.1109/TPAMI.1986.4767851 PMID: 21869365

8. Wachowicz A, Pytlik J, Malysiak-Mrozek B, Tokarz K, Mrozek D. Edge computing in IoT-enabled honey-

bee monitoring for the detection of varroa destructor. INT J Ap Mat Com-Pol. 2022; 32(3):355–369.

https://doi.org/10.34768/amcs-2022-0026

9. Risso M, Burrello A, Conti F, Lamberti L, Chen Y, Benini L, et al. Lightweight neural architecture search

for temporal convolutional networks at the edge. IEEE T Comput. 2023; 72(3):744–758. https://doi.org/

10.1109/TC.2022.3177955

10. Weizhong S, Weiwei C, Yanming F, Jiajun D, Shu C, Hao X. FPGA-based real-time edge detection and

its implementation for deep-space images. electronic science and technology. 2020; 33(5):45–49.

https://doi.org/10.16180/j.cnki.issn1007-7820.2020.05.008

11. Jin W, Jun Z, Cong L, Hanning W. Implementation of SDSo C acceleration algorithm for edge detection

algorithm in machine vision. Computer Engineering and Applications. 2019; 55(12):208–214.

12. Keqiang X, Guangming L, Renren L, Zhijun W, Jun X. Implemention and optimization of Canny operator

on DSP. Modern Electronics Technique. 2014; 37(6):8–11. https://doi.org/10.16652/j.issn.1004-373x.

2014.06.034

13. Xiangjiao L, Guangliang L, Xuewu Z, Jinliang G. The parallel canny algorithm based on TBB. Journal of

Nanyang Institute of Technology. 2014; 6(3):47–50. https://doi.org/10.16827/j.cnki.41-1404/z.2014.03.

013

14. Yue Z, Xiaohong W, Xiaohai He. Real-time image edge detection based on GPU. Electronic Measure-

ment Technology. 2009; 31(2):140–142. https://doi.org/10.19651/j.cnki.emt.2009.02.041

15. Bin T, Wen L. Fast Canny algorithm based on GPU+CPU. Chinese Journal of Liquid Crystals and Dis-

plays. 2016; 31(7):714–720. https://kns.cnki.net/kns8/defaultresult/index

16. Jin W, Ying L, Zhentao L, Qiaoshen L. GPU implementation of machine vision algorithm based on

OpenCL. Computer Engineering and Design. 2019; 40(2):346–351. https://doi.org/10.16208/j.

issn1000-7024.2019.02.009

17. Mochurad LI. Canny edge detection analysis based on parallel algorithm, constructed complexity scale

and CUDA. Computing and Informatics, 2022, 41(06): 957–980. https://doi.org/10.31577/cai_2022_4_

957

18. Horvath M, Michael B, Shadi A. Canny edge detection on GPU using CUDA. IEEE 13th Annual Com-

puting and Communication Workshop and Conference (CCWC). 2023; 0419–0425. https://dx.doi.org/

10.1109/CCWC57344.2023.10099273

19. Iqbal B, Iqbal W, Khan N, Mahmood A, Erradi A. Canny edge detection and Hough transform for high

resolution video streams using Hadoop and Spark. Cluster Comput. 2020; 23(1):397–408. https://doi.

org/10.1007/s10586-019-02929-x

20. Cao JF, Chen LC, Wang M, Tian Y. Implementing a parallel image edge detection algorithm based on

the Otsu-Canny operator on the Hadoop platform. Comput Intel Neurosc. 2018; (3):1–13. https://doi.

org/10.1155/2018/3598284 PMID: 29861711

21. Xiaoli H, Li D, Jie J. Real-time image edge detection of the improved Canny algorithm. Journal of Inner

Mongolia University of Science and Technology. 2015; 34(3):262–266. https://doi.org/10.16559/j.cnki.

2095-2295.2015.03.013

22. Sangeetha D, Deepa P. FPGA implementation of cost-effective robust Canny edge detection algorithm.

J Real-Time Image Pr. 2019; 16(4):957–970. https://doi.org/10.1007/s11554-016-0582-2

23. Lee J, Tang H, Park J. Energy efficient Canny edge detector for advanced mobile vision applications.

IEEE T Circ Syst Vid. 2018; 28(4):1037–1046. https://doi.org/10.1109/TCSVT.2016.2640038

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 30 / 31

https://doi.org/WOS:000309372900004
https://doi.org/WOS:000309372900004
https://doi.org/10.1007/s10586-017-1508-x
https://doi.org/10.1109/TPDS.2020.3021238
https://doi.org/10.1109/TPDS.2020.3021238
https://doi.org/10.1109/JSEN.2022.3193060
https://doi.org/10.1109/TCSI.2020.3031895
https://doi.org/10.1109/TPAMI.1986.4767851
http://www.ncbi.nlm.nih.gov/pubmed/21869365
https://doi.org/10.34768/amcs-2022-0026
https://doi.org/10.1109/TC.2022.3177955
https://doi.org/10.1109/TC.2022.3177955
https://doi.org/10.16180/j.cnki.issn1007-7820.2020.05.008
https://doi.org/10.16652/j.issn.1004-373x.2014.06.034
https://doi.org/10.16652/j.issn.1004-373x.2014.06.034
https://doi.org/10.16827/j.cnki.41-1404/z.2014.03.013
https://doi.org/10.16827/j.cnki.41-1404/z.2014.03.013
https://doi.org/10.19651/j.cnki.emt.2009.02.041
https://kns.cnki.net/kns8/defaultresult/index
https://doi.org/10.16208/j.issn1000-7024.2019.02.009
https://doi.org/10.16208/j.issn1000-7024.2019.02.009
https://doi.org/10.31577/cai%5F2022%5F4%5F957
https://doi.org/10.31577/cai%5F2022%5F4%5F957
https://dx.doi.org/10.1109/CCWC57344.2023.10099273
https://dx.doi.org/10.1109/CCWC57344.2023.10099273
https://doi.org/10.1007/s10586-019-02929-x
https://doi.org/10.1007/s10586-019-02929-x
https://doi.org/10.1155/2018/3598284
https://doi.org/10.1155/2018/3598284
http://www.ncbi.nlm.nih.gov/pubmed/29861711
https://doi.org/10.16559/j.cnki.2095-2295.2015.03.013
https://doi.org/10.16559/j.cnki.2095-2295.2015.03.013
https://doi.org/10.1007/s11554-016-0582-2
https://doi.org/10.1109/TCSVT.2016.2640038
https://doi.org/10.1371/journal.pone.0292345

24. Suwen Z, Zhixing C, Yixin SU. Improved Canny edge detection algorithm and implementation in FPGA.

Infrared Technology. 2010; 32(2):93–96. https://kns.cnki.net/kns8/defaultresult/index

25. Shengxiao N, Sheng W, Jingjing Y. A Fast image segmentation algorithm fully based on edge informa-

tion. Journal of Computer-Aided Design and Computer Graphics. 2012; 24(11):1410–1419. https://kns.

cnki.net/kns8/defaultresult/index

26. Fuqiang Z, Cao Y, Wang XM. Fast and resource-efficient hardware implementation of modified line seg-

ment detector. IEEE T Circ Syst Vid. 2018; 28(11):3262–3273. https://doi.org/10.1109/TCSVT.2017.

2746753

27. Sivakumar V, Janakiraman N. A novel method for segmenting brain tumor using modified watershed

algorithm in MRI image with FPGA. Biosystems. 2020; 198(S1):1–13. https://doi.org/10.1016/j.

biosystems.2020.104226 PMID: 32861800

28. Hongye Z. Optimization identification and simulation about household registration management per-

sonal fingerprint image. Heilongjiang Science. 2020; 11(12):1–3. https://kns.cnki.net/kns8/

defaultresult/index

29. Rongbao C, Tianze F, Honghu Jiang. Identification method of welding perpendicularity for components

based on DSP+FPGA. Computer Measurement and Control. 2017; 25(6):207–210, 214. https://doi.

org/10.16526/j.cnki.11-4762/tp.2017.06.056

30. Jin Hanjun, Zeng T. Contour extraction of moving objects in video sequences based on GPU. Electronic

Measurement Technology. 2016; 39(11):85–88. https://doi.org/10.19651/j.cnki.emt.2016.11.018

31. Tengzhang J, Yuxin H, Peng L, Kai Z, Xianqing T. A method of multi-ship target detection and tracking

by on-orbit satellite. Journal of University of Chinese Academy of Sciences. 2020; 37(3):368–378.

https://kns.cnki.net/kns8/defaultresult/index

32. Gadowski S, Tomiczak K, Komsta L. High dynamic range in videodensitometry-a comparative study to

classic videoscanning on Gentiana extracts. JPC-J Planar Chromat. 2023; 36(1):3–8. https://doi.org/

10.1007/s00764-023-00226-3

33. Alvarez-Farre X, Gorobets A, Trias FX. A hierarchical parallel implementation for heterogeneous com-

puting. Application to algebra-based CFD simulations on hybrid supercomputers. Comput Fluids. 2021;

214(10):1–10. https://doi.org/10.1016/j.compfluid.2020.104768

34. Tran TH, Sun KC, Simon S. A GPU-accelerated light-field super-resolution framework based on mixed

noise model and weighted regularization. J Real-Time Image Pr. 2022; 19(5):893–910. https://doi.org/

10.1007/s11554-022-01230-2

35. Simmross-Wattenberg F, Rodrı́guez-Cayetano M, Royuela-del-Val J, Martin-Gonzalez E, Moya-Saez

E, Martin-Fernandez M, et al. OpenCLIPER: An OpenCL-based C++ framework for overhead-reduced

medical image processing and reconstruction on heterogeneous devices. IEEE J Biomed Health. 2019;

23(4):1702–1709. https://doi.org/10.1109/JBHI.2018.2869421 PMID: 30207968

36. Xiao H, Fan YM, Ge F, Zhang Z, Cheng X. Algorithm-hardware co-design of real-time edge detection

for deep-space autonomous optical navigation. IEICE T Inf Syst. 2020; E103D(10):2047–2058. https://

doi.org/10.1587/transinf.2020PCP0002

37. Zimu X, Ki-Young S, Madan MG. Development of a CNN edge detection model of noised X-ray images

for enhanced performance of non-destructive testing. Measurement. 2021; 174(10):1–17. https://doi.

org/10.1016/j.measurement.2021.109012

38. Lee DHE, Chen PY, Yang FH, Weng WT. High-efficient low-cost VLSI implementation for Canny edge

detection. J Inf Sci Eng. 2020; 36(3):535–546. https://doi.org/10.6688/JISE.202005_36(3).0004

39. Lakshmi SJ, Deepa P. Blind image deblurring using GLCM and negans obtuse mono proximate dis-

tance. Imaging Sci J. 2023; 70(01):19–29. https://doi.org/10.1080/13682199.2022.2161996

40. Zhang X, Lu W, Ding YW, Song YH, Xia JY. A mixed method for feature extraction based on resonance

filtering. intelligent automation and soft computing. 2022; 35(03):3141–3154. https://doi.org/10.32604/

iasc.2023.027219

PLOS ONE A parallel Canny edge detection algorithm based on OpenCL acceleration

PLOS ONE | https://doi.org/10.1371/journal.pone.0292345 January 5, 2024 31 / 31

https://kns.cnki.net/kns8/defaultresult/index
https://kns.cnki.net/kns8/defaultresult/index
https://kns.cnki.net/kns8/defaultresult/index
https://doi.org/10.1109/TCSVT.2017.2746753
https://doi.org/10.1109/TCSVT.2017.2746753
https://doi.org/10.1016/j.biosystems.2020.104226
https://doi.org/10.1016/j.biosystems.2020.104226
http://www.ncbi.nlm.nih.gov/pubmed/32861800
https://kns.cnki.net/kns8/defaultresult/index
https://kns.cnki.net/kns8/defaultresult/index
https://doi.org/10.16526/j.cnki.11-4762/tp.2017.06.056
https://doi.org/10.16526/j.cnki.11-4762/tp.2017.06.056
https://doi.org/10.19651/j.cnki.emt.2016.11.018
https://kns.cnki.net/kns8/defaultresult/index
https://doi.org/10.1007/s00764-023-00226-3
https://doi.org/10.1007/s00764-023-00226-3
https://doi.org/10.1016/j.compfluid.2020.104768
https://doi.org/10.1007/s11554-022-01230-2
https://doi.org/10.1007/s11554-022-01230-2
https://doi.org/10.1109/JBHI.2018.2869421
http://www.ncbi.nlm.nih.gov/pubmed/30207968
https://doi.org/10.1587/transinf.2020PCP0002
https://doi.org/10.1587/transinf.2020PCP0002
https://doi.org/10.1016/j.measurement.2021.109012
https://doi.org/10.1016/j.measurement.2021.109012
https://doi.org/10.6688/JISE.202005%5F36%283%29.0004
https://doi.org/10.1080/13682199.2022.2161996
https://doi.org/10.32604/iasc.2023.027219
https://doi.org/10.32604/iasc.2023.027219
https://doi.org/10.1371/journal.pone.0292345

